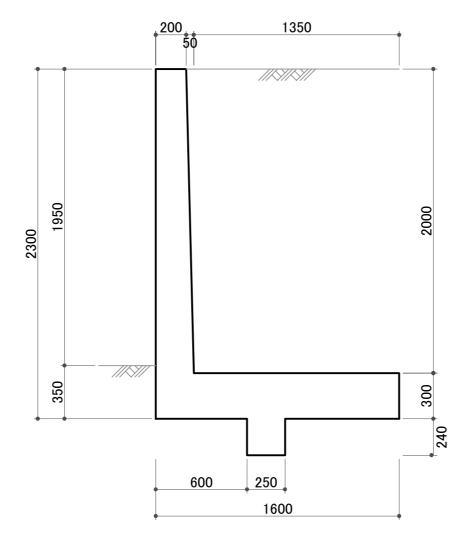
擁壁設計計算書 摂津新在家 L型擁壁(2.300 mタイプ) 2001年3月31日

1. 設計条件

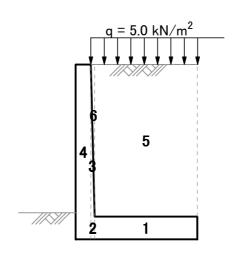
設置場所 :大阪府 摄津市


新在家2丁目1133-5、1140-1

擁壁形状 : L型擁壁 擁壁タイプ : 2.300 m TYPE

土の種別 :シルトまたは粘土				_
土の単位重量	γ_s	=	16.0	kN/m ³
鉄筋コンクリートの単位重量	γ _c	=	24.0	kN/m^3
表面載荷重	q	=	5.0	kN/m^2
許容地盤反力度	q_a	=	100.0	kN/m^2
土圧係数				
安定計算時	K_A	=	0.50	
応力計算時	K_A	=	0.50	
背面土の内部摩擦角	ϕ	=	16.0	0
土の粘着力	С	=	0.0	
基礎底面と土の摩擦角 $(=\phi)$	ϕ_B	=	16.0	0
基礎底面と土の粘着力(=2/3C)	CB	=	0.0	
基礎底面と土の摩擦係数	μ	=	0.3	
壁背面と鉛直面とのなす角				
安定計算時	θ	=	0.000	0
応力計算時	θ	=	1.432	0
地表面と水平面とのなす角	β	=	0.000	0
壁面摩擦角				
安定計算時(= β)	δ	=	0.0	٥
応力計算時(= $2/3\phi$)	δ	=	10.7	٥
土圧の作用角度				
安定計算時(=δ)	δs	=	0.0	0
応力計算時($=\theta+\delta$)	δ _S	=	12.1	0
転倒安全率 常 時	Fs	=	1.5	
滑動安全率 常 時	F _s	=	1.5	
突起の安全率 常 時	F _s	=	1.5	
使用材料				
コンクリートの設計基準強度	F _c	=	21	N/mm^2
コンクリートの許容圧縮応力度	$\sigma_{\sf ca}$	=	7	N/mm^2
コンクリートの許容せん断応力度		=	0.70	N/mm^2
鉄筋の種類 :				
鉄筋の許容引張応力度	$\sigma_{\sf sa}$	=	196	N/mm^2

2. 形状寸法


縮尺 1:25

3. 荷重条件

1. 自重

要素分割図 縮尺 1:50

区分		要素番号	断面積	単位重量	鉛直力	アームX	アームY	モーメントX	モーメントY
	<i>/</i> J	女术田勺	m ²	kN/m³	kN/m	m	m	kNm/m	kNm/m
躯(1	0.405	24.000	9.720	0.925	0.150	8.991	1.458
	/ -1-	2	0.015	24.000	0.360	0.225	0.150	0.081	0.054
	体	3	0.050	24.000	1.200	0.217	0.967	0.260	1.160
		4	0.460	24.000	11.040	0.100	1.150	1.104	12.696
躯体合計					22.320	0.468	0.689	10.436	15.368
背面土	5	2.700	16.000	43.200	0.925	1.300	39.960	56.160	
	11 ⊥	6	0.050	16.000	0.800	0.233	1.633	0.186	1.306
背面出	上合計				44.000	0.912	1.306	40.146	57.466
載布	計重				7.000	0.900	2.300	6.300	16.100
総合	計				73.320	0.776	1.213	56.882	88.934

2. 背面土による土圧

$$P_1 = \frac{1}{2} \cdot K_A \cdot \gamma_S \cdot H^2 = \frac{1}{2} \times 0.500 \times 16.000 \times 2.300^2 = 21.160 \text{ kN/m}$$

 $P_{1H}=P_1\cos\delta_S=21.160\times1.000=21.160 \text{ kN/m}$

 $P_{1V}=P_{1}$ sin $\delta_{S}=21.160 \times 0.000=0.000 \text{ kN/m}$

3. 表面載荷重による土圧

 $P_2 = K_A \cdot q \cdot H = 0.500 \times (5.000 - 5.000) \times 2.300 = 0.000 \text{ kN/m}$

 $P_{2H}=P_{2}\cos\delta_{S}=0.000\times1.000=0.000~kN/m$

 $P_{2V} = P_2 \cdot \sin \delta = 0.000 \times 0.000 = 0.000 \text{ kN/m}$

4. 土圧

荷重	重	土圧	鉛直力	水平力	アームX	アームY	安定モーメント	転倒モーメント
	-	kN/m	kN/m	kN/m	m	m	kNm/m	kNm/m
背面:	土土圧	21.160	0.000	21.160	1.600	0.767	0.000	16.223
荷載荷	重土圧	0.000	0.000	0.000	1.600	1.150	0.000	0.000
合	計		0.000	21.160			0.000	16.223

4. 安定計算

1. 転倒に対する検討

$$M_r = 56.882 + 0.000 = 56.882 \text{ kNm/m}$$

$$M_o = P_{1H} \cdot \frac{H}{3} + P_{2H} \cdot \frac{H}{2} = 21.160 \times \frac{2.300}{3} + 0.000 \times \frac{2.300}{2} = 16.223 \text{ kNm/m}$$

 $\Sigma M = M_r - M_o = 56.882 - 16.223 = 40.659 \text{ kNm/m}$

 Σ V=73.320+0.000=73.320 kN/m

$$d = \frac{\sum M}{\sum V} = \frac{40.659}{73.320} = 0.5545 \text{ m}$$

$$d(=0.5545) > \frac{B}{3} (= \frac{1.600}{3} = 0.5333)$$
 OK

d≥B/3を満足するので、転倒に対する安定性はOK。

2. 滑動に対する検討

 $\Sigma V = 73.320 \text{ kN/m}$

 Σ H=21.160+0.000=21.160 kN/m

$$Fs = \frac{\sum V \cdot \mu}{\sum H} = \frac{73.320 \times 0.300}{21.160} = 1.0395 < 1.5$$
 NG

滑動安全率が、1.0以上1.5未満なので突起を設ける。

・突起の計算

L=H₀*tan
$$\left(45^{\circ} + \frac{\phi_B}{2}\right) = 0.240 \times \tan 53.000^{\circ} = 0.318 \text{ m}$$

$$\sigma_0 = \frac{1}{2} \cdot (\sigma_1 + \sigma_2) = \frac{1}{2} \times (73.086 + 56.351)$$

$$=64719 \text{ kN/m}^2$$

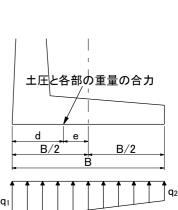
$$P = \sigma_0 \cdot \tan^2 \left(45^\circ + \frac{\phi_B}{2} \right) = 64.719 \times \tan^2 53.000^\circ$$

 $=113.966 \text{ kN/m}^2$

$$W_1 = \frac{1}{2} \cdot (q_1 + \sigma_1) \cdot L_1 + \frac{1}{2} \cdot (q_2 + \sigma_2) \cdot L_2$$

=
$$\frac{1}{2}$$
 × (87.927+73.086) × 0.282+ $\frac{1}{2}$ × (3.723+56.351) × 1.000=52.740 kN/m

$$F_S = \frac{W_1 \cdot \mu + P \cdot H_0}{\Sigma H} = \frac{52.740 \times 0.300 + 113.966 \times 0.240}{21.160}$$

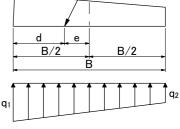

$$=2.0403 > 1.5$$
 OK

3. 地盤反力に対する検討

$$e = \frac{B}{2} - d = \frac{1.600}{2} - 0.555 = 0.245 \text{ m}$$

$$\sigma = \frac{\sum V}{B} \cdot \left(1 \pm 6 \cdot \frac{e}{B} \right) = \frac{73.320}{1.600} \times \left(1 \pm 6 \times \frac{0.245}{1.600} \right)$$

$$= \left\langle \frac{q_1 = 87.9267 \text{ kN/m}^2}{q_2 = 3.7232 \text{ kN/m}^2} \right. < 100.0 \text{ kN/m}^2 \text{ OK}$$



ÎH₀

Tq2

b

σ1

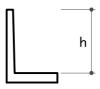
5. 断面の計算

- 1. たて壁の計算
- (1)たて壁下端
 - (a) 土圧の計算
 - •主働土圧

$$P_{A1} = \frac{1}{2} \cdot K_{A} \cdot \gamma_{s} \cdot h^{2} = \frac{1}{2} \times 0.500 \times 16.000 \times 2.000^{2} = 16.000 \text{ kN/m}$$

·主働土圧の水平成分

$$P_{h1} = P_{A1} \cdot \cos \delta_s = 16.000 \times 0.978 = 15.648 \text{ kN/m}$$


•表面載荷荷重

$$P_{A2}=K_A \cdot q \cdot h$$

$$=0.500 \times (5.000 - 5.000) \times 2.000 = 0.000 \text{ kN/m}$$

・表面載荷荷重による土圧の水平成分

$$P_{h2} = P_{A2} \cdot \cos \delta_s = 0.000 \times 0.978 = 0.000 \text{ kN/m}$$

(b)断面力の計算

・曲げモーメント

$$M=P_{h1} \cdot \frac{1}{3} \cdot h + P_{h2} \cdot \frac{1}{2} \cdot h = 15.648 \times \frac{1}{3} \times 2.000 + 0.000 \times \frac{1}{2} \times 2.000 = 10.432 \text{ kNm/m}$$

・せん断力

$$S=P_{h1} + P_{h2} = 15.648 + 0.000 = 15.648 \text{ kN/m}$$

(c)応力度の計算

•使用鉄筋

鉄筋径 D13 鉄筋間隔 @300 鉄筋断面積(As) 4.223 cm²

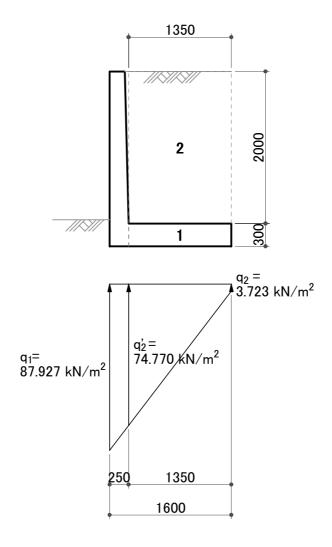
•中立軸

断面の応力度

$$\sigma_{c} = \frac{2 \cdot M}{b \cdot x \cdot \left(d - \frac{x}{3}\right)} = \frac{2 \times 10.432 \times 10^{3}}{100 \times 4.223 \times \left(18.300 - \frac{4.223}{3}\right)}$$

=2.9247 N/mm
2
 < σ_{ca} =7 N/mm 2 OK

$$\sigma_s = 15 \cdot \sigma_c \cdot \frac{d-x}{x} = 15 \times 2.925 \times \frac{18.300 - 4.223}{4.223}$$


=146.2534 N/mm
2
 < $\sigma_{\rm sa}$ =196 N/mm 2 OK

$$\tau = \frac{S}{b \cdot (d - \frac{x}{3})} = \frac{15.648 \times 10}{100 \times (18.300 - \frac{4.223}{3})}$$

=0.0926 N/mm²
$$<$$
 τ _a =0.70 N/mm² OK

2. 底版の計算

(a) 自重及び応力度

区分	要素番号	断面積	単位重量	せん断	アームX	モーメント	
		m ²	kN/m³	kN/m	m	kNm/m	
躯	体	1	0.405	24.000	9.720	0.675	6.561
背回	五土	2	2.700	16.000	43.200	0.675	29.160
表面載	載荷重				6.750	0.675	4.556
合	計				59.670		40.277

(b)接地圧による断面力

・接地圧によるモーメント

$$M_q = \frac{1}{6} \cdot (2 \cdot q_2 + q_2') \cdot L^2 = \frac{1}{6} \times (2 \times 3.723 + 74.770) \times 1.350^2 = 24.973 \text{ kNm/m}$$

・接地圧によるせん断

$$S_q = \frac{1}{2} \cdot (q_2' + q_2) \cdot L = \frac{1}{2} \times (74.770 + 3.723) \times 1.350 = 52.983 \text{ kN/m}$$

(c)断面力合計

・曲げモーメント

$$M = \sum M_w - M_q = 40.277 - 24.973 = 15.304 \text{ kNm/m}$$

・せん断力

$$S = \sum S_w - S_q = 59.670 - 52.983 = 6.687 \text{ kN/m}$$

(d)応力度の計算

•使用鉄筋

鉄筋径 D13 鉄筋間隔 @300 鉄筋断面積(As) 4.223 cm²

•中立軸

・断面の応力度

$$\sigma_c = \frac{2 \cdot M}{b \cdot x \cdot (d - \frac{x}{3})} = \frac{2 \times 15.304 \times 10^3}{100 \times 4.836 \times (23.300 - \frac{4.836}{3})}$$

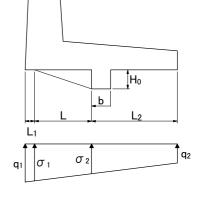
=2.9182 N/mm²
$$< \sigma_{ca}$$
 =7 N/mm² OK

$$\sigma_s = 15 \cdot \sigma_c \cdot \frac{d-x}{x} = 15 \times 2.918 \times \frac{23.300 - 4.836}{4.836}$$

=167.1152 N/mm²
$$< \sigma_{sa} = 196 \text{ N/mm}^2 \frac{\text{OK}}{}$$

$$\tau = \frac{S}{b \cdot (d - \frac{x}{3})} = \frac{6.687 \times 10}{100 \times (23.300 - \frac{4.836}{3})}$$

=0.0308 N/mm
2
 < τ a =0.70 N/mm 2 OK


3. 突起の計算

- (a)断面力の計算
 - ・せん断力

S=W₁ ·
$$\mu$$
 +P·H₀ =52.740 × 0.300 + 113.966 × 0.240 =43.174 kN/m

・曲げモーメント

M=S
$$\cdot \frac{1}{3}$$
 \cdot H₀=43.174× $\frac{1}{3}$ ×0.240=3.454 kNm/m

(d)応力度の計算

•使用鉄筋

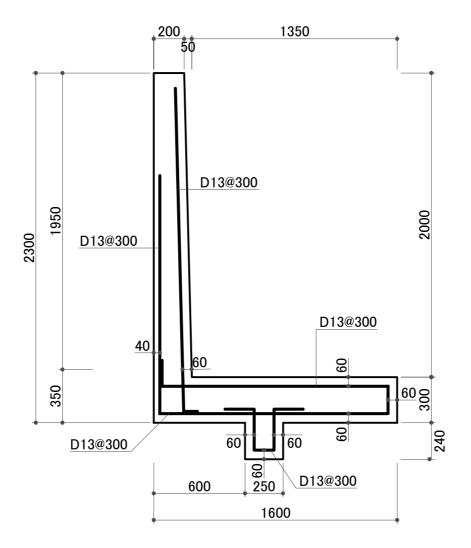
鉄筋径 D13 鉄筋間隔 @300 鉄筋断面積(As) 4.223 cm²

•中立軸

・断面の応力度

$$\sigma_{c} = \frac{2 \cdot M}{b \cdot x \cdot \left(d - \frac{x}{3}\right)} = \frac{2 \times 3.454 \times 10^{3}}{100 \times 4.223 \times \left(18.300 - \frac{4.223}{3}\right)}$$
$$= 0.9683 \text{ N/mm}^{2} < \sigma_{ca} = 7 \text{ N/mm}^{2} \text{ OK}$$

$$\sigma_s = 15 \cdot \sigma_c \cdot \frac{d-x}{x} = 15 \times 0.968 \times \frac{18.300 - 4.223}{4.223}$$


=48.4011 N/mm² <
$$\sigma_{sa}$$
 =196 N/mm² OK

$$\tau = \frac{S}{b \cdot \left(d - \frac{x}{3}\right)} = \frac{43.174 \times 10}{100 \times \left(18.300 - \frac{4.223}{3}\right)}$$

=0.2555 N/mm
2
 < au a =0.70 N/mm 2 OK

6. 配筋断面形状(参考図)

縮尺 1:25

